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The effect of counter cations in zeolites on the efficient
preparation of the binaphthol–titanium complex
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Abstract

Na-zeolites, among zeolites with a variety of counter cations, are found to provide the active binaphthol–titanium catalyst
for an asymmetric carbonyl-ene reaction. A sufficient content of Na cations in zeolites is the key for the efficient formation
of the active catalyst. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Zeolites have been extensively used as het-
erogeneous catalysts not only for industrial
petrochemical processes but also for fine chemi-

w xcal transformations 1–7 . The combination of
acidrbase character, shape selectivity due to the
nature and content of counter cations as well as
the pore size of the zeolites are important fac-
tors that determine their catalytic abilities. We
have reported that hydrated zeolites, molecular

Ž . Ž . w xsieves MS 4A NaA–zeolite 8–13 , catalyze
Ž i.the ligand-exchange reaction of Cl Ti OPr2 2

Ž .with optically pure binaphthol BINOL into an
Ž . Ž . wactive BINOL–Ti catalyst 1 Scheme 1 14–

x Ž .17 . The chiral BINOL–Ti catalyst 1 thus
obtained serves as an efficient catalyst for
asymmetric carbon–carbon bond forming reac-

w xtions 18–20 such as the carbonyl-ene reaction
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w x21–24 . We here report that the catalytic activ-
ity of the binaphthol-derived titanium com-
plexes is significantly dependent on the counter
cations in zeolites employed in the catalyst
preparation step.

2. Results and discussion

In our continuous study on the asymmetric
Ž .catalysis by the BINOL–Ti catalyst 1 , the

Ž .hydrated MS 4A NaA–zeolite has been found
to act not only as H O donor but also as a base2

to trap HCl eventually providing the active BI-
Ž . w xNOL–Ti catalyst 1 25 . In order to investigate

the effect caused by counter cations in zeolites,
we examined isomorphous A-zeolites with dif-
ferent counter cations. The carbonyl-ene reac-

Ž .tion of glyoxylate 2 was carried out at y308C
for 1 h by using 10 mol% of a titanium complex
which was prepared in situ by stirring a mixture

Ž i.of Cl Ti OPr and optically pure BINOL for 12 2
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Scheme 1.

Scheme 2.

Žh in the presence of A-zeolite 6% wrw H O, 52
.gr1 mmol of Ti with varying counter cations

Ž . 1Scheme 2 .

1 Typical procedure for carbonyl-ene reaction: To a solution of
Ž . Ž . Ž . Ždried R - q -binaphthol 28.6 mg, 0.10 mmol in CH Cl 12 2

. Ž i. Ž .ml was added Cl Ti OPr 23.7 mg, 0.10 mmol at room2 2

temperature under an argon atmosphere. The resulting mixture
Ž .was added to a suspension of zeolite 0.5 g; 6% wrw H O in2

Ž .CH Cl 3 ml . After stirring for 1 h at that temperature, the2 2

reddish brown suspension was cooled to y308C. a-Methylstyrene
Ž .118 mg, 1.00 mmol and a solution of freshly-distilled n-butyl

Ž . Ž .glyoxylate 156 mg, 1.20 mmol in CH Cl 0.4 ml were added2 2

in this order to the suspension. After stirring for 1 h at y308C, the
reaction mixture was quenched with a solution of triethylamine
Ž . Ž .0.1 ml in hexane 10 ml . The zeolite was filtered off through a
pad of Celite and the filtrate was concentrated under vacuum. The
crude material was purified by silica gel chromatography
Ž .hexane:ethyl acetates20:1 to give n-butyl 2-hydroxy-4-phenyl-
4-pentenoate. The enantiomeric purity was determined by HPLC
analysis using CHIRALPAK-AS as a chiral stationary phase

i Ž .column; hexanerPr OHs3:1, 0.5 mlrmin, t of R -isomer: 9.5R
Ž .min and S -isomer: 12.6 min.

As shown in Scheme 2, the catalytic activity
of the titanium complexes is strongly affected
by the counter cation in the A-zeolite. The
titanium complex prepared in the presence of

Ž .CaA-zeolite MS 5A is found to give the ene
Ž .product 3 in quite a low yield along with low

enantioselectivity. This is in contrast to the ordi-
Ž .nary NaA-zeolite MS 4A . Here the ene reac-

tion proceeds almost quantitatively with ex-
tremely high enantioselectivity. In the presence

Ž . Ž .of KA-zeolite MS 3A , the ene product 3 is
obtained with high enantioselectivity but in
slightly decreased chemical yield. It is obvious
that sodium is the most effective counter cation
in A-zeolites in order to obtain the highly active
BINOL–Ti catalyst.

To gain an insight into the significant differ-
Žences of catalytic activity chemical yield and

.enantioselectivity observed, we next conducted
an NMR analysis of the titanium complexes



( )M. Terada et al.rJournal of Molecular Catalysis A: Chemical 132 1998 165–169 167

Fig. 1. NMR spectra of the titanium complexes prepared in the presence of A-zeolite.
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prepared in the presence of A-zeolite
Ž . 2Fig. 1 .

In the absence of zeolites, the chemical shifts
of the BINOL signals in the presence of

Ž i. Ž .Cl Ti OPr chart b in CD Cl were the same2 2 2 2
Ž .as those of the free BINOL ligand chart a

except for considerable line broadening. How-
ever, upon addition of NaA-zeolite, the broad-
ened signals changed into a complex pattern of

Ž .NMR peaks chart c and the active BINOL–Ti
Ž . Ž .catalyst 1 was formed within 1 h Scheme 2 .

In the presence of CaA-zeolite, however, no
Ž .change was observed chart d resulting in the

same NMR as observed in the absence of zeo-
Ž .lite chart b . Low chemical yield and low

enantioselectivity observed with CaA-zeolite is
inferred from a quite slow transformation into

Ž .the active BINOL–Ti catalyst 1 . In fact, the
ene reaction catalyzed by the titanium complex

Ž .prepared in the absence of zeolite chart b
exhibited similarly low chemical yield and
enantioselectivity. Even after prolonged stirring
Ž . Ž .20 h chart e , a considerable amount of the
free BINOL ligand remained unchanged, whilst
showing an increased amount of 1 as could be
concluded from the observation of the complex
NMR pattern. It was identical to the one found

Ž .in chart c MS 4A, 1 h and the ene reaction led
to a significant increase not only in chemical

Ž .yield 28™84% but also in enantioselectivity
Ž .35.0™90.9% ee . Interestingly enough, in the

Ž .presence of KA-zeolite chart f , spectroscopi-
cally distinguishable peaks of a new titanium

Ž .complex 4 appeared in the complex NMR
pattern similar to those observed with NaA-

2 NMR experiments: Titanium complexes were prepared in a
Ž .similar manner as described above. To a solution of dried R -

Ž . Ž . Ž .q -binaphthol 14.3 mg, 0.05 mmol in CD Cl 0.5 ml was2 2
Ž i. Ž .added Cl Ti OPr 11.8 mg, 0.05 mmol at room temperature2 2

under an argon atmosphere. The resulting mixture was added to a
Ž . Ž .suspension of zeolite 0.25 g; 6% wrw H O in CD Cl 1.5 ml .2 2 2

After stirring for 1 h at that temperature, the reddish brown
suspension was centrifuged and the zeolite was sedimented. The

Ž .supernatant solution 0.6 ml was transferred to an NMR tube by a
syringe under an argon atmosphere. Prolonged stirring samples
were prepared likewise.

Table 1
BINOL–Ti complex prepared with various Na-zeolites

a bRun Na-zeolite Pore size Na Ee Yield
˚Ž . Ž . Ž . Ž .A wt% % %

Ž .1 NaA MS 4A 4.2 16.2 97.7 97
2 NaX 7.4 14.8 96.8 99
3 NaY 7.4 10.1 95.0 88
4 Na–mordenite 6.7=7.0 6.0 75.3 55

a Na-zeolite contain 6% wrw H O.2
b Based on dry Na-zeolites.

Ž .zeolite. This new complex 4 is assumed to be
composed of 2 sets of naphthyl rings on the
basis of a COSY experiment 3. Prolonged

Ž .preparation time chart g led to a decrease in
these peaks and in turn an increase in the com-

Ž .plex peaks observed with NaA-zeolite chart c
Žfor complex 1. The higher chemical yield 86

.™93% following the longer preparation time
Ž .1™20 h also suggests that the titanium com-

Ž .plex 4 is gradually transformed into the active
Ž .BINOL–Ti catalyst 1 . It should be empha-

sized here that the use of sodium as counter
Ž .cation Na-zeolite is critical to provide the

Ž .active BINOL–Ti catalyst 1 efficiently and
quickly.

Finally, we examined the effect of different
pore sizes and of varying sodium content in

Ž . Ž .Na-zeolite 6% wrw H O Table 1 . It is of2

particular interest that the catalytic activity is
strongly dependent on the sodium content in
zeolites regardless of the pore size. By the use
of NaX-zeolite bearing a larger pore size than

Ž .NaA-zeolite, the ene product 3 was obtained
in an equally high chemical yield and enantiose-

Ž .lectivity as with NaA-zeolite run 1 versus 2 .
On the other hand the chemical yield and enan-

3 Ž . ŽIn contrast to the active BINOL–Ti catalyst 1 Cl: 0.6%; Ti:
. w x Ž .11.4% 25 , elemental analysis of titanium complex 4 showed

Ž .the presence of a significant amount of Cl Cl: 7.14%; Ti: 10.2%
with the ratio of ClrTi reaching almost 1. Furthermore 17O NMR

Ž .analysis of the titanium complex 4 which was prepared in the
17 Ž .presence of MS 3A doped with H O 10 atom % enriched2

Žexhibited a peak at 519 ppm with significant broadening W s1r2
. Ž .1220 Hz . Thus the titanium complex 4 is composed of m -oxo3

Ž . w x450–650 ppm titanium chloride species. See Ref. 26–28 .
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tioselectivity were significantly decreased with
Ždecreasing sodium content in zeolite run 2™3

.™4 .
In summary, we have demonstrated that Na-

zeolite is the most effective additive for this
type of ligand exchange reaction. The high con-
tent of sodium in the zeolites is crucial to the

Ž i.transformation of BINOL and Cl Ti OPr into2 2
Ž .the active BINOL–Ti catalyst 1 .
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